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Abstract

This paper estimates the dynamic effect of Stay-At-Home (SAH) orders on the transmission

of COVID-19 in the United States. Identification in this setting is challenging due to differences

between real and reported case data given the imperfect testing environment, as well as the

clearly non-random adoption of treatment. We extend a Susceptible-Infected-Recovered (SIR)

model from Epidemiology to account for endogenous testing at the county level, and exploit

this additional structure to recover identification. With the inclusion of model-derived sufficient

statistics and fixed effects, SAH orders have a large and sustained negative effect on the growth

of cases under plausible assumptions about the progression of testing. Point estimates range

from a 44% to 54% reduction in the growth rate of cases one month after a SAH order. We

conclude with a discussion on extending the methodology to later phases of the pandemic.
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1 Introduction

It is difficult to exaggerate the severity of the COVID-19 pandemic in the United States. After

“flattening the curve” three separate times since April, new daily cases are once again on the rise

(see Figure 1). Even as we approach a spring season with cautious optimism and a set of vaccines

on hand, it is important to understand how effective existing policy tools are at stopping the virus

given uncertainty surrounding both vaccine take-up and protection offered by the shot against

newer variants of COVID-19.1 One policy used widely during the initial propagation of the disease

was the Stay-At-Home (SAH) order, where states require citizens to remain at home unless they

need to leave for an essential activity.2 While the aggregate time-series evidence suggests that

these policies were effective at arresting the growth rate of new cases, credible causal estimation of

treatment effects on disease spread remains challenging due to a number of identification challenges.

The most difficult of these is related to non-classical measurement error: we do not expect

actual COVID-19 cases to match those reported by local health authorities. We could use stan-

dard econometric methods if this measurement error is classical, but as infections are almost surely

systematically under-reported, we cannot reasonably maintain that this error is mean zero. Over-

coming this issue therefore requires a theoretical framework relating observed positive cases to

actual infections.3 We augment a standard Susceptible-Infected-Recovered (SIR) model from Epi-

demiology with endogenous testing and derive assumptions about variation in testing capacity over

time and across space that must be made in order to conduct valid inference. The SIR model

governs the evolution of cases and disciplines all of our estimating equations, while the theory on

testing reveals how different fixed effects amount to substantive assumptions about testing capacity.

The second challenge to credibly identifying the effect of SAH orders on disease spread is the

non-random adoption of treatment. All else equal, states with higher rates of spread are more likely

to implement the policy on a given day. Simple comparisons then suggest that SAH orders increase

1This is especially true given the slow roll-out of the vaccine in countries other than the United States.
2Starting on March 19th with California and concluding with South Carolina on April 7th, 42 states enacted

a SAH order during the sample period ending on April 30th. We maintain an absorbing treatment assumption
throughout, and show robustness to dropping Montana and Colorado which removed their respective SAH orders a
number of days before the last day in our sample.

3Yang et al. (2020) estimates the active prevalence of COVID-19 based on an SIR model that allows for the
fact that testing is skewed towards symptomatic individuals. They find that accounting for this reveals that the
prevelance of COVID-19 could be up to three times higher in the United States, highlighting the importance of
considering testing and how it relates to caseload data. However, the paper focusses on the extent of spread, not the
effect that a policy such as stay-at-home orders would have on this prevalence.



the spread of COVID-19, an implausible conclusion given our knowledge of disease transmission.

The recursive structure of the SIR model implies a sufficient statistic that captures this underlying

heterogeneity: the lag of cumulative cases is sufficient to determine the current evolution of daily

cases, in the absence of policy. A parallel trends assumption on the evolution of daily cases across

different cohorts of SAH adopters then identifies potential dynamic effect of SAH orders. Pre-

trends tests in our model-derived estimating equations can then be used to assess the validity of

this parallel trends assumption in the post-period, which we find strong support for. 4

Figure 1: New Cases of COVID-19 Reported to the CDC
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This figure plots the 7-Day Moving Average of daily new cases of COVID-19 reported in the U.S. Data was

collected from the CDC on 3/30/2021 at

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html

Despite these unique challenges to identification, there has been an explosion of economic re-

4This is subject to the additional assumption that dynamic treatment effects associated with a SAH do not vary
too much across different cohorts adopting treatment (Sun and Abraham (2020)). We believe this is reasonable given
the short time period between the first and last adopter (20 days), but estimates assessing robustness are forthcoming.

https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/cases-in-us.html


search focusing on the effectiveness of policy responses: as of the time of writing, more than 380

pandemic related working papers have been uploaded to NBER; and COVID Economics has pub-

lished 468 papers on the economics of COVID-19, with at least 20 focusing specifically on the effects

of lock-down measures. Early work based on US data includes Lyu and Wehby (2020), Dave et al.

(2020) and Fowler et al. (2020), which all focus on the treatment effect of SAH orders, but each use

specifications with differing outcome variables and fixed effects. Each find significant effects with

lock-downs, but notable pre-trends suggest the parallel trends identifying assumption is suspect, at

least as specified.5 Similar specifications have been used to compare policies across countries using

cross-country regression analysis (Alfano and Ercolano (2020), Bonardi et al. (2020)). Research

since then has expanded to look at the effects of different policies; for example, Isphording et al.

(2020) study the impact of public health informed school re-openings in Germany on the spread of

COVID-19. Further, Schlosser et al. (2020) focus on how geographic mobility interacts with SAH

orders to reduce spread.6

Related work to ours includes Allcott et al. (2020), which derives event study specifications from

the SIR model in a similar fashion. However, we explicitly deal with the problem that observed data

is the endogenous outcome of testing and show how different sets of fixed effects are structurally

related to different assumptions on testing capacity. Some practitioners focus on simulating the

SIR model to derive estimates of effect size (as in Giordano et al. (2020)), while we estimate it

using a specification from the model and minimal data requirements. We derive the additional

assumptions on the evolution of testing capacity over time and across space needed to properly

interpret fixed effects estimators of this effect.

Finally, Chernozhukov et al. (2020) construct an SIR model that is similar in spirit to ours but

written in continuous time. They find an expression for the growth rate of confirmed cases, which

they approximate using a discrete time difference equation. They proceed by assuming that the

growth of testing capacity7 is a linear function of the growth of the number of tests administered.

Their equation (10) restricts the growth rate in the number of confirmed cases to be positively

5Their estimates naturally vary in size and interpretation: for instance, Fowler et al. (2020) find that the infections
declined by 30% in the first week after the lock-down, while Lyu and Wehby (2020) estimate that there is a difference
of 0.51 per 10,000 resident in cases after imposing lock-down in a state compared to its neighbor.

6They find that counties become more disconnected once they impose lock-downs, and there is a significant
reduction in mobility, which also leads to a decline in disease spread.

7Defined here as the percentage of true cases reported by local public health officials.



related to the corresponding growth rate in tests administered in a linear fashion. We pursue an

alternative approach in our main specifications by making assumptions on the progression of testing

capacity itself; this amounts to restricting the variation in confirmed cases we permit to identify

the effect of SAH on disease transmission. As such, these approaches are complementary ways of

solving the challenge of making inference about real COVID-19 cases from reported ones.

We proceed as follows. Section 2 documents our data sources and implements the standard two-

way fixed effects (TWFE) estimator, while section 3 derives alternative estimating equations based

on the SIR model augmented with endogenous testing. This section also presents and discusses our

main finding, that SAH orders adopted early in the pandemic had a strong and significant effect on

curbing the spread of disease, as well as the identifying assumptions on testing and parallel trends

needed to believe it. We conclude in section 4 with some extensions and robustness checks, as well

as a discussion of how to interpret and adapt our framework during later phases of the pandemic.

2 Standard Event Study

At its core, this paper is concerned with the research question: “What is the effect of Stay At

Home Orders on the spread of the COVID-19?” On face, this is a policy evaluation that seems to

be easily answerable with standard econometric tools. This section attempts to evaluate the effect

of SAH orders using a TWFE event study approach and illustrates its pitfalls in this context.

2.1 Data

To measure the spread of SARS-CoV-28, we collect county level data on both the number of positive

cases of and deaths attributable to COVID-19 compiled by The New York Times. The data begins

on January 21st, 2020, with the first reported case in the United States, and includes the cumulative

number of cases and deaths for each county on each day through April 30th, at the time of writing.

To compile this dataset, The New York Times collected historical information from local and state

governments and health departments; as a result, these data are subject to the same limitations

as this source material. First, there are cases in which state reports do not report cases separately

by county, or the county of residence of an individual is simply reported as “unknown.” Second,

8Throughout, we interchangeably use the terms: COVID-19, SARS-CoV-2, the coronavirus, and the pandemic.



and more importantly, these data should be interpreted as the incidence of COVID-19 conditional

on the level of testing at the county level. Preliminary estimates suggest that a large fraction of

positive cases remain undetected (Jagodnik et al. (2020)), which we tackle explicitly in Section 4.

We collect the date each state implemented a SAH order from the New York Times.9 In our

data set, we count 42 states as implementing SAH orders (as well as Washington, D.C.); the eight

that do not are Arkansas, Iowa, Nebraska, North Dakota, Oklahoma, South Dakota, Utah and

Wyoming. Importantly, we do not count Oklahoma’s “Safer-At-Home” order as an SAH order, as

it only applied to the older and more vulnerable to serious infection. In addition, while several

localities within Oklahoma, Utah and Wyoming issued their own SAH orders, we do not consider

them as treated, as these policies were not implemented state-wide.

2.2 Empirical Specification

We observe C counties for T days in our data set. We define the Stay-At-Home event for county

c, Ec, as the day on when the state in which that county resides imposed a stay at home order.

Then, we can utilize the TWFE event study specification:

Yc,t =
l=28∑

l=−7,l 6=−1
µl · 1{t− Ec = l}+ µ29+ · 1{t− Ec ≥ 29}+ αc + γt + εc,t (1)

Yc,t is an unspecified outcome variable, as it is ex-ante unclear what transformation of positive

cases is appropriate to use. In each county c, we count the total number of people who tested

positive by day t, Tc,t. Then, to measure the daily number of new cases, we take first differences

4Tc,t := Tc,t − Tc,t−1. We set Yc,t = ln{4Tc,t + 1}, noting that 4Tc,t grows in an exponential

manner during the beginning of a pandemic.

We use an event window of 1 week before the SAH order through 4 weeks after, omitting the

day before the event. In addition, we include a term that bins together all days after 4 weeks to

capture “long run” effects of treatment, though in practice for most states the data do not extend

far beyond our event window. Finally, we include county and time fixed-effects to account for fixed

differences across counties in spread and national trends in cases, respectively.

9Data collected at https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html

https://www.nytimes.com/interactive/2020/us/coronavirus-stay-at-home-order.html


Figure 2: Standard TWFE Event Study Results
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Figure plots point estimates and 95 percentile confidence interval of Equation (1). The dependent variable is the
daily number of new infections. The regression model includes time and county fixed effects. Standard errors are

clustered at the state level.

2.3 Results & Discussion

Figure 2 reports the results from estimating equation (1). The point estimates are noisy, especially

around a month following the SAH order, but it is clear that this model estimates a weakly positive

impact of SAH orders on positive cases.

These results strike us as suspect for two reasons. First, it seems extremely unlikely ex-ante that

SAH orders increase the spread of SARS-CoV-2. A null estimate seems perfectly plausible, as it is

unsettlingly easy to imagine Americans roundly ignoring this public health directive, reducing SAH

orders to a placebo treatment in effect. A positive coefficient estimate seems more consistent with

the interpretation that treatment is not randomly assigned conditional on the covariates included;

rather, it is likely that the imposition of an SAH order is correlated with the growth rate of positive



cases in a state. This interpretation is bolstered by the second problem with these results: there

is a clear pre-trend in the event coefficients preceding the SAH orders. This suggests that counties

receiving earlier treatment are experiencing faster case growth than those receiving later treatment

(or no treatment at all), which casts serious doubt on interpreting these results as causal.

In light of these issues, we focus on correctly modeling the expected spread of SARS-CoV-2 in

the absence of treatment. Adding structure to our estimation strategy reduces dependence on the

faulty assumption of random timing of SAH orders. To achieve this, we augment an epidemiological

model with endogenous testing to inform which variables explain the unmitigated spread of the virus

and how these variables enter the conditional expectation. Then, under the assumption that the

restrictions imposed by our model are correct, we are able to recover causal identification.

3 Causal Evidence

3.1 SIR Model

To understand how we expect COVID-19 to spread, we utilize a simple discrete time SIR model.10

An SIR model divides the population in each county c at time t into three groups: Susceptible

(Sc,t), Infected (Ic,t) and Recovered (Rc,t). It then describes how the stock of these groups will

change over time as a function of two key parameters. The model is described completely by the

following set of difference equations:

Susceptible : Sc,t = Sc,t−1 − βc,t · Ic,t−1
Sc,t−1
Nc

(2)

Infected : Ic,t = (1− γ) · Ic,t−1 + βc,t · Ic,t−1
Sc,t−1
Nc

(3)

Recovered : Rc,t = Rc,t−1 + γ · Ic,t−1 (4)

The dynamics of the model are determined by the parameters (βc,t, γ). βc,t describes the rate of

infection in county c at time t under the assumption of random mixing: in period t, every infected

person from last period Ic,t−1 spreads the disease to βc,t people at random, of which the portion

Sc,t−1

Nc
are susceptible, leading to mc,t := βc,tIc,t−1

Sc,t−1

Nc
new infections in period t. At the same

time, some proportion γ of Ic,t−1 recover, while (1− γ)Ic,t−1 individuals stay infected in period t.

10Atkeson (2020) provides an excellent introduction to a continuous time SIR model for economists.



We can now consider how to identify policy effects separately from the county-specific growth

rate βc,t. We do this by taking logs and linearizing the model. We show that without making further

restrictions on βc,t we cannot identify policy effects; in light of this, we outline two identification

strategies under different restrictions on the progression of βc,t.

3.2 Identifying Policy Effects

To begin, suppose that all of the model variables are observable. In this case, we can follow the

derivations in Gupta et al. (2020). Early in an epidemic, it is reasonable to assume that almost all

of the population is susceptible to the disease, i.e. Sc,t/Nc ≈ 1. Taking the log of new cases yields

ln(mc,t) = ln(βc,t) + ln(Ic,t−1) (5)

Note that we can do this in a general sense only because of the recursive nature of the problem,

i.e. because this relationship holds for all t within the framework of our model. New cases today

are only a function of the growth rate of cases in a county, βc,t, and the number of infected people

in that county yesterday, Ic,t−1. The former is a structural parameter, and the latter is a variable

that summarizes the state of the world going into the current period. This is the sense in which

we consider infections yesterday a “sufficient statistic” to determine cases today.11

Of course, we do not believe that this equation holds exactly in practice; rather, we assume it

is modeling the conditional mean of ln(mc,t) in the absence of policy. Formally, E[ln(mc,t)|Ic,t−1] =

ln(βc,t) + ln(Ic,t−1), and we define εc,t := ln(mc,t)− E[ln(mc,t)|Ic,t−1], allowing us to rewrite 5 as

ln(mc,t) = ln(βc,t) + ln(Ic,t−1) + εc,t

Now, let µs(c),t denote the impact of some state-level SAH order on the spread of the virus. Specif-

ically, we model this treatment as lowering the growth rate of the virus by a fixed proportion in

every county c in state s at time t. Then, the effective growth rate in county c at time t will be

11A parallel can be drawn here with the motivation for using lagged variables as IVs in the macroeconomics
literature. Current variables are only affected by structural parameters through state variables, making the exclusion
restriction clear, at least in theory. State variables are also uncorrelated with unobservables that might affect the
control variables by design, satisfying exogeneity. Likewise, the control variable in our case, i.e. the number of cases
today, is determined completely by the number of infected cases yesterday and a structural parameter.



βc,tµs(c),t, and the progression of daily cases will be given by

ln(mc,t) = ln(βc,t) + ln(µs(c),t) + ln(Ic,t−1) + εc,t

Proposition: State-level policy effects are not identified in the fully general SIR model.

Proof: Let {βc,t, µs(c),t, γ, F ec,t} describe the progression of cases, where εc,t ∼ F ec,t. Define β′c,t such

that ln(β′c,t) = ln(βc,t) + ln(µs(c),t) and let µ′s(c),t = 1. Then, {β′c,t, µ′s(c),t, γ, εc,t} leads to the same

distribution of observed daily cases.

In light of proposition 1, we know that we need to impose structure on the structural parameters

βc,t in order to identify policy effects. We first consider the simplest assumption - that this growth

rate does not vary over time:

βc,t = βc (Assumption 1B)

Under Assumption 1B, we can identify the treatment effect of a SAH order using a panel event

study approach with only county fixed effects αc = ln(βc):
12

ln(mc,t) =

l=28∑
l=−7,l 6=−1

µl · 1{t− Ec = l}+ αc + ln(Ic,t−1) + εc,t

Unfortunately, this estimation is infeasible, as we are unable to observe neither mc,t nor Ic,t−1.

We do not observe mc,t as we are limited in each period by existing testing capacity and infras-

tructure. We miss Ic,t−1 for two reasons. It is clear that total infections yesterday is a function

of all previous new daily cases; that is, Ic,t−1 = f(mc,t−1, ...,mc,t0 ;β, γ). As a result, any issues

with testing in the past will impact our estimate of the stock of infections today. In addition, this

variable is not equivalent to the stock of positive cases yesterday, even if testing is complete, as

it does not include people who have recovered and can no longer pass the disease along to others.

Therefore, to the extent that recovery data is incomplete, we will have issues measuring the number

of individuals who are currently infected.

12This section will omit the binned terms from our specifications for brevity.



3.3 Testing

In light of this issue, we account for testing within our model.13 Specifically, we add the variable

Tc,t, the total number number of individuals who have tested positive in county c at time period t, to

the model. Then, by making assumptions on the relationship between the underlying mechanisms

of the SIR model and what we observe, we can recover the event study coefficients. We assume

that, in each period, we are able to estimate some fraction τc,t of daily new cases in each county

(mc,t). In the general form of this model, τc,t can vary both across counties and over time. Using

this new parameter, we can write Tc,t using the recursion Tc,t = Tc,t−1+τc,tmc,t, which is equivalent

to 4Tc,t = τc,tmc,t. The left hand side of this equation is now the number of daily new cases, which

we observe. Taking logs of this relationship and utilizing (5) gives us that

ln(4Tc,t) = ln(τc,t) + ln(βc) + ln(Ic,t−1) (6)

We now need only find an expression for ln(Ic,t−1) in terms of variables we observe. Adding together

(3) and (4) and utilizing the definition of mc,t gives us that

Ic,t +Rc,t = Ic,t−1 +Rc,t−1 +mc,t =
t∑

i=t0

mc,i

A similar recursion using positive tests allows us to write

Tc,t = Tc,t−1 + τc,tmc,t =

t∑
i=t0

τc,imc,i

Unless we are willing to make the assumption that testing capacity is not evolving over time, we

cannot solve for the general relationship between Tc,t and Ic,t +Rc,t. Nevertheless, it is clear from

these derivations that we can write down the reduced form relationship between these variables as

Tc,t = τRFc,t · (Ic,t + Rc,t), where τRFc,t (τc,t, ..., τc,t0 ;βc, γ) is some unknown function of the evolution

of testing capacity in county c. Taking logs of this relationship and rearranging gives us that

13Berger et al. (2020) extends the basic SEIR model to include testing as well. They are able to show that a
mixture of higher levels of testing and targetted quarantining can both reduce transmission and dampen the impact
of the virus on the economy. However, theirs is a model that calibrates certain facts about COVID-19 (such as the
infection rate or the quarantine rate) and therefore does not have en empirical strategy per se – which makes sense
because they are attempting to recommend policy. However, we take the SEIR model as a starting point to inform
our empirical analysis to assess the effectiveness of the stay-at-home orders.



ln(Ic,t +Rc,t) = ln(Tc,t)− ln(τRFc,t ). We can utilize this expression to rewrite (6) as

ln(4Tc,t) = ln(τc,t) + ln(βc) + ln(Ic,t−1)

= ln(τc,t) + ln(βc) + ln(Ic,t−1)− ln(Ic,t−1 +Rc,t−1) + ln(Ic,t−1 +Rc,t−1)

= ln(τc,t)− ln(τRFc,t−1) + ln(βc) + ln(Tc,t−1) + {ln(Ic,t−1)− ln(Ic,t−1 +Rc,t−1)}

Early in a pandemic, we would expect ln(Ic,t−1)− ln(Ic,t−1 +Rc,t−1) = ln(
Ic,t−1

Ic,t−1+Rc,t−1
) to be small.

The size of this fraction depends on how fast the disease is spreading relative to the rate of recovery

at the beginning of the pandemic - this is referred to as the basic reproduction rate R0 = βc/γ.14

Intuitively, as the disease spreads initially with a high R0, the stock of infected individuals grows

much faster than the stock of recovered individuals. Further, since ∂
∂x∂y ln( x

x+y ) < 0, even as

the stock of recovered individuals inevitably rises, this difference remains small. Utilizing the

approximation ln(Ic,t−1)− ln(Ic,t−1 +Rc,t−1) ≈ 0, we can write:

ln(4Tc,t) = ln(τc,t/τ
RF
c,t−1) + ln(βc) + ln(Tc,t−1) (7)

In principle, this motivates the event study design

ln(mc,t) =
l=28∑

l=−7,l 6=−1
µl · 1{t− Ec = l}+ ln(τc,t/τ

RF
c,t−1) + αc + ln(Tc,t−1) + εc,t

Since this empirical design is informed directly by an SIR model, we can interpret µl in the same

way as before. Notice that αc = ln(βc) and µl both enter additively into the log of daily cases; as a

result, properly transformed, µl gives the average change in βc on day l after the implementation of

a SAH order. Formally, ln(βc) + µl = ln(βce
µl), so that 100 · (1− eµl) gives the average percentage

change in the growth rate across counties induced by SAH orders.

3.3.1 Relationship to Literature

Before continuing, it is worthwhile to briefly discuss the relationship between this model of imperfect

testing and what has been developed in the empirical literature. As noted earlier, Chernozhukov

14A medical metastudy (Liu et al. (2020)) finds the number to be within 1.4 to 6.49 with a mean of 3.28.



et al. (2020) derive a similar model: their equation (8) describing the evolution of confirmed cases

is the continuous time analog of our equation 4Tc,t = τc,tmc,t. We derive their estimating equation

within our discrete time framework to illustrate how our focus differs from theirs.

Taking the first difference of the natural log of our identity 4Tc,t = τc,tmc,t for confirmed cases

decomposes the growth rate of this variable into two sources, growth in testing capacity and spread

of disease: 4 ln(4Tc,t) = 4 ln(τc,t) + 4 ln(mc,t). Taking the first difference of equation 6 (and

adding that βc,t = βc) reveals that 4 ln(mc,t) = 4 ln(Ic,t−1), allowing us to write 4 ln(4Tc,t) =

4 ln(τc,t) + 4 ln(Ic,t−1). Maintaining our earlier assumption that Sc,t/Nc ≈ 1, we can rearrange

equation 3 from our SIR model to describe the progression of infections as Ic,t = (1 + βc− γ)Ic,t−1.

Taking logs and rearranging slightly yields 4 ln(Ic,t) = ln(1 +βc− γ), which we can substitute into

our expression for the growth rate of confirmed cases:

4 ln(4Tc,t) = 4 ln(τc,t) + ln(1 + βc − γ) ≈ 4 ln(τc,t) + (βc − γ)

This is the discrete time version of equation (10) in Chernozhukov et al. (2020), which provides

a theoretical basis for their estimating equation. They proceed by assuming that the growth of

testing capacity 4 ln(τc,t) is a linear function of the growth of the number of tests administered,

which is observable, and focus on modeling how βc − γ evolves in response to changes in behavior

and information over time. In contrast, we assume that βc − γ is stationary and focus on making

inferences when testing, 4 ln(τc,t), evolves in a complicated manner over time. Equation 7 is better

suited for this approach, so we return to our model of how daily positive cases evolve over time.

3.4 Identification

Unfortunately, at this point, we are still unable to identify µl. This stems from the fact that τc,t

varies at the county-day level, so we cannot differentiate a rise in cases over time due to spread

of the disease from changes in testing. We view this as the fundamental identification challenge

stemming from endogenous testing. At this point we need to impose more structure in order to

recover a useful estimating equation. We consider several different assumptions that allow us to

identify µl, and proceed from the most to least restrictive.



3.4.1 Time-Invariant Testing

First, we could impose that

τc,t = τc (Assumption 1T)

is constant over time.15 As a result, Tc,t = τc
∑t

i=t0
mc,i = τc(Ic,t+Rc,t), which gives us the intuitive

result that τc = τRFc , since we are simply reporting some fixed fraction of cases in every period.

Then, 7 will simplify to ln(4Tc,t) = ln(βc) + ln(Tc,t−1), which is the observed analog of (5). This

result is important, as it establishes a sufficient condition under which we can estimate βc as if we

are observing the true number of cases.

Under (Assumption 1B) & (Assumption 1T), we can utilize an event study approach to identify

the impact of a stay at home order. Our SIR model implies the following specification:

ln(4Tc,t) =
l=28∑

l=−7,l 6=−1
µl · 1{t− Ec = l}+ δlag · ln(Tc,t−1) + αc + DOTWt + εc,t (8)

We use county level fixed effects to difference out the county specific growth rate, and we include

cumulative cases yesterday to control for the expected number of cases today. Intuitively, this

functions as a sufficient statistic (along with αc) for what we expect daily new cases to be in the

absence of a public health intervention. Lastly, we include 7 day of the week fixed effects DOTWt

to account for systematic differences in case reporting throughout the week.16

Figure 3(a) plots the results of this specification. The contrast with Figure 2 is immediately

clear - we no longer have a pre-trend in daily new cases, and the effect of a SAH order is negative

and significant. One month after the SAH order is implemented, our event coefficient µ28 = −.661,

implying a 48% average reduction in the spread of COVID-19. As noted previously, Liu et al.

(2020) find that the average estimated R0 was 3.28; our estimates imply that the reproductive rate

at time t+ 28 is Rt+28 = 1.70, implying a substantial reduction but not elimination of spread.17

15It is important to note that this assumption does not impose that testing capacity remains constant over time.
Rather, we assume that we are identifying a fixed fraction of infected individuals, which implies that testing capacity
is expanding at the same rate as the virus is spreading. As a result, this assumption is not inconsistent with the
commonsense observation that more tests are being performed over time, though it might still not be appropriate.

16Including day-of-the-week fixed effects doesn’t change our results much, but we notice that it shrinks the standard
error bands around our estimates. This is to be expected given that we are essentially controlling for the variation
that is happening because of the cyclicality in the reporting – it is well documented that there is a big drop in cases
reported on weekends compared to the middle of the week, for instance.

17Rt would need to drop below 1 for spread to eventually stop, as this reflects a scenario in which each infected
person is spreading the disease to less than 1 other person.



Figure 3: Causal Event Study Results
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(a) Assumption 1B & Assumption 1T
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(b) Assumption 2B & Assumption 1T

Panel (a) plots the estimates and 95 percent confidence intervals for Equation (8). In all models, the dependent
variable is the daily number of new infections, and county fixed effects and lagged stock of positive cases are

controlled for. Panel (b) plots the estimates and 95 percent confidence intervals for Equation (10). Standard errors
are clustered at the state level.



We view this simple model as having two major lessons. First, ln(Tc,t−1) should be included as a

control to correctly adjust for what cases are expected to be this period (as well as unit fixed effects).

Second, if the determinants of case growth are specified properly, there is no need to include daily

fixed effects, which are standard in the TWFE design. In practice, we find that including these

fixed effects only serves to increase noise in the model, as a lot of important variation is soaked up,

without a clear theoretical justification. The assumptions needed for this model to be correct are

restrictive, so we now turn to estimation when testing can change differentially over time.

3.4.2 Identification Issues: Changing Testing Over Time

To begin, we could impose the similar but less restrictive assumption that τc,t varies over time but

does not change too quickly. To illustrate, let w(t) denote the week that day t is a part of and

assume that τc,t = τc,w(t) is determined entirely by w(t) rather than t18. On face, this would seem

to have solved the identification challenge, as we can now contribute intraweek variation in cases

to spread, not changes in testing. However, even when the structural testing parameter does not

vary at the daily level, the reduced form parameter will.

To see this, let mc,w denote the total number of new cases in week w,19 and let Ic,w and Rc,w

denote the total stock of infected and recovered individuals at the end of week w, respectively.

Notice that we can rewrite Tc,t as the weighted sum of weekly averages:

Tc,t =

w(t)∑
w=0

τc,wmc,w = τc,w(t)mc,w(t) +

w(t)−1∑
w=0

τc,wmc,w

= τc,w(t){(Ic,t +Rc,t)− (Ic,w(t)−1 +Rc,w(t)−1)}+ τ INTc,w(t)−1(Ic,w(t)−1 +Rc,w(t)−1)

Where the last equality utilizes the identity mc,w(t) = (Ic,t + Rc,t) − (Ic,w(t)−1 + Rc,w(t)−1) and

implicitly defines τ INTc,w = Tc,w/(Ic,w + Rc,w), which are fixed for all t′ after week w. A bit of

rearranging shows us that

Tc,t = τc,w(t)(Ic,t +Rc,t) + {τ INTc,w(t)−1 − τc,w(t)}(Ic,w(t)−1 +Rc,w(t)−1) (9)

18This analysis remains unchanged for any different level of aggregation.
19Strictly speaking, mc,w is a function of t, as it gives the number of cases in week w(t) on day t. We write

mc,w(t) = mc,w in the derivations in this section.



What this tells us is that testing today has an affine relationship with the stock of infected and

recovered individuals, with coefficients that vary at the weekly level. As a result, since τRFc,t imposes

a linear relationship between these variables, it must vary at the daily level.

Unfortunately, we cannot escape this problem by assuming that testing does not vary too much

across space, our other dimension of variation. Suppose testing capacity does not vary across state

so τc,t = τs,w(t). We can still write Tc,t as the weighted sum of weekly averages, but since each

county has a different path of daily new cases, the intercept still varies at the county-week level:

Tc,t = τs,w(t)mc,w(t) +

w(t)−1∑
w=0

τs,wmc,w

= τs,w(t){(Ic,t +Rc,t)− (Ic,w(t)−1 +Rc,w(t)−1)}+ τ INTc,w(t)−1(Ic,w(t)−1 +Rc,w(t)−1)

This illustrates exactly how assumptions on testing impact the theoretical relationship between

total population of ever-infected individuals (Ic,t + Rc,t) and the number of these individuals that

we have identified (Tc,t). Any level of testing aggregation across time will be reflected in the

intercept and slope terms, but any level of testing aggregation across space will only be reflected in

the slope term. However, neither assumption or its combination, will give us that the relationship

between these variables is linear and varies at a level higher than our level of observation.

3.4.3 Modeling the Affine Relationship

In light of this, we deal directly with the affine relationship identified earlier. Since assuming

that testing only varies at the state level does not simplify the model, we maintain the previous

assumption that testing capacity progresses at the county-week level, i.e. τc,t = τc,w(t). We can

rearrange (9) to obtain the following expression for Ic,t +Rc,t:

τc,w(t)(Ic,t +Rc,t) = Tc,t − {τ INTc,w(t)−1 − τc,w(t)}(Ic,w(t)−1 +Rc,w(t)−1)

= Tc,t −
τc,w(t) − τ INTc,w(t)−1

τ INTc,w(t)−1
Tc,w(t)−1

To simplify notation, let ζc,w(t) := −
τc,w(t)−τINT

c,w(t)−1

τINT
c,w(t)−1

, and define T ∗c,t := Tc,t + ζc,w(t)Tc,w(t)−1. Substi-

tuting into the expression above, we now have that τc,w(t)(Ic,t +Rc,t) = T ∗c,t.



Once again recalling (6), we can perform a similar derivation to obtain that

ln(4Tc,t) = ln(τc,w(t)) + ln(βc) + ln(Ic,t−1) ≈ ln(βc) + ln(T ∗c,t−1)

= ln(βc) + ln(Tc,t−1) + ln

(
1 +

ζc,w(t−1)Tc,w(t−1)−1

Tc,t−1

)

Finally, we linearize the last term around 1 so that ln

(
1 +

ζc,w(t−1)Tc,w(t−1)−1

Tc,t−1

)
≈ ζc,w(t−1)Tc,w(t−1)−1

Tc,t−1
.

This is appropriate when ζc,w(t−1)Tc,w(t−1)−1 � Tc,t−1, which relies on ζc,w(t−1) and Tc,w(t−1)−1/Tc,t−1

being small. Notice that Tc,w(t−1)−1/Tc,t−1 ≤ 1 by construction, so we need to assume like before

that testing capacity does not change drastically from week to week; formally

τc,t = τc,w(t) and τc,w(t) − τ INTc,w(t)−1 ≈ 0 (Assumption 2T)

Under Assumption 2T, our model implies that

ln(4Tc,t) = ln(βc) + ln(Tc,t) + ζc,w(t−1)−1
Tc,w(t−1)−1

Tc,t−1

Accordingly, we estimate policy effects using the event study specification

ln(4Tc,t) =
l=28∑

l=−7,l 6=−1
µl ·1{t−Ec = l}+αc+δlag ln(Tc,t−1)+αc,w(t−1)−1

Tc,w(t−1)−1

Tc,t−1
+DOTWt+εc,t

(10)

We interact county-by-week fixed effects αc,w with Tc,w(t−1)−1/Tc,t−1 to estimate the coefficient on

this term ζc,w(t−1)−1, which varies at the county-by-week level.

Figure 3(b) plots the result of this specification. The pattern of event coefficients is different

here - there is a clear pre-trend leading up to and continuing past the event date, suggesting that the

growth rate of cases in treated counties is increasing relative to control areas. Nevertheless, despite

this, after a month counties with a SAH order have significantly decreased spread of COVID-19.

Around one month after the SAH order is implemented, our event coefficient µ28 = −.777, implying

a 54% average reduction in the growth rate βc and effective reproductive rate of Rt+28 = 1.50.



3.5 Adding Mobility

3.5.1 Theory

So far, we have maintained Assumption 1B and held that the rate of infection βc can differ across

county but must remain constant over time. Clearly, we need to impose structure on βc,t, as we

could then not distinguish changes in the underlying spread from policy effects by the proposition

established earlier. However, we can break βc,t into its component parts and introduce data to

measure some of these components to estimate a model with weaker assumptions on the components

we cannot observe.

To begin, we expand our basline model and now allow βc = βc,t to change over time. Recall

that β gives the expected number of susceptible individuals one infected person will pass the virus

to. Following Arnon et al. (2020), we can decompose this rate into the product of the expected

number of susceptible individuals one infected person will come in contact with and the probability

that the virus is transmitted, conditional on contact. We define the former as the contact rate κc,t

and the latter as the infection rate θc,t, giving us that

βc,t = κc,t · θc,t (11)

Taking logs of this equation reveals that ln(βc,t) = ln(κc,t) + ln(θc,t), which enter additively into

our estimating equation.

We assume that the contact rate can change over time, and we introduce new data in the next

subsection to proxy for these changes. To recover identification, we assume that the infection rate is

constant across time; that is, θc,t = θc. This rate is likely a function of two factors: biological factors

specific to the disease, and the demographic make-up of the population. The former are constant

across all counties,20, but the latter need to be accounted for. Let Xc denote all demographic

factors that determine the spread of COVID-19. To the extent that these determinants do not

change over time, we can write θc(Xc) as their aggregate impact on the infection rate, which we

can account for using fixed effects estimation.

20While there are documented mutations of SARS-CoV-2, it is unlikely that new strains are changing over time,
within county, during our sample frame, in a manner that would seriously impact our results.



3.5.2 Data

We use the patterns data from SafeGraph21 to measure mobility. Using anonymized data from

mobile devices, the company has compiled daily visits to about 7 million points of interest (POI)

located across the United States. The POI include a wide range of physical locations such as

restaurants, retail and grocery stores.

Our mobility measure is very similar to weekly estimates used in Allcott et al. (2020), except

that ours is at a daily frequency. On each calendar day, we aggregate visits to each POI using

its FIPS code into a county level panel. For simplicity, we do not differentiate across types of

establishments and focus on capturing widest range of foot traffic possible. While this increased

frequency allows for greater time variation, it also creates strong day-of-the-week seasonality. To

address the issue, we use a 7-day moving average of the POI visit counts as our baseline measure.

Our mobility measure closely captures decreased mobility across counties around March. To

illustrate, we plot the time series of total POI visits in Los Angeles County of California and

Washtenaw County of Michigan on Figures 4a and 4b. On March 13th, the White House declared

the pandemic a National Emergency (US President, Proclamation (2020)) - as these figures illus-

trate, mobility declines markedly upon declaration of national emergency by the federal government

(‘NE’) and continue to drift downwards following the announcement of stay-at-home orders (‘SAH’)

in their respective states.

To match this empirical fact, we model the March 13th emergency declaration as a national-

level information event that is responded to differentially by county. Formally, we modify equation

(11) such that

ln(βc,t) = ln(κc) + 1(t ≥ March 13) ln(κ̂c,t) + ln(θc) (Assumption 2B)

To be clear, we are assuming that the 7-day average contact rate is constant within county in the

period leading up the March 13 emergency declaration. Then, following this date, we assume the

contact rate is measured by our POI metric κ̂c,t, which we are able to include as a control. This

21https://docs.safegraph.com/docs/weekly-patterns

https://docs.safegraph.com/docs/weekly-patterns


Figure 4: Mobility Patterns in Selected Counties
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This figure plots the time series of total visits to points of interest (POIs) located in Los Angeles County of California
and Washtenaw Coiunty of Michigan according to SafeGraph. 7-day moving averages of daily visits are in solid red
lines, and the raw series are plotted in thinner blue lines. Solid vertical line is drawn on March 13 of 2020, when the
federal government declared national emergency. Dashed vertical lines are denoted on dates when the governors of
Michigan and California issued Stay-at-Home orders.



motivates the event study design:

ln(4Tc,t) =
l=28∑

l=−7,l 6=−1
µl·1{t−Ec = l}+αc+δlag ln(Tc,t−1)+δmob1(t ≥ March 13) ln(κ̂c,t)+DOTWt+εc,t

(12)

Where αc = ln(βc) + ln(κc) + ln(θc), maintaining Assumption 1T.

3.5.3 Results

Figure 5(a) plots our results when we control for POI visit mobility and impose Assumption 1T. The

results are similar in Figure 5(b), which utilizes controls for both mobility (under Assumption 2B)

and testing (under Assumption 2T). These results look very similar qualitatively to those without

mobility controls. We still have the same upward pre-trend leading up to lockdown measures in

counties under Assumption 2T, but there is a significant negative effect of SAH orders in both

specifications. Our main results are therefore robust to accounting for a time varying βc,t, at least

as far as the time variation is captured by changes in mobility, which the literature and theory

both suggest it should be. Quantitatively, our µ28 = −.589 & µ28 = −.705 in each respective

specification, which implies a 44-50% reduction in the spread of cases.

4 Conclusion

We build a novel SIR model with endogenous testing to identify the effect of Stay-at-Home orders

on COVID-19 spread. One insight is that the number of infections in the previous period (or a

proxy for it) is a key control variable that must be included in the event study in order to properly

estimate the impact of the policy. This is because the number of infections yesterday summarizes

the state of the world going into the current period, and together with some structural parameters

determines the spread of the virus today. Another key contribution is to show how different sets of

fixed effects amount to different assumptions about the progression of a county’s ability to detect

the virus over time. Taking into account these two issues, and assuming a conditional parallel

trends assumption holds, we find that SAH orders have a strong sustained negative effect on the

growth of cases under various assumptions about the progression of testing, with point estimates

varying from 44% to 54%.



Figure 5: Causal Event Study Results
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(a) Assumption 1B & Assumption 2T
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(b) Assumption 2B & Assumption 2T

Panel (a) plots the estimates and 95 percent confidence intervals for Equation (12). In all models, the dependent
variable is the daily number of new infections, and county fixed effects and lagged stock of positive cases are

controlled for. Panel (b) plots the estimates and 95 percent confidence intervals for Equation (12) with additional
testing controls from Equation (10). Standard errors are clustered at the state level.



These estimates imply that SAH orders are a strong policy tool to eliminate the spread of

COVID-19. However, it is important to note that initial estimates of R0 suggest that reductions

of βc,t of the magnitude we find will not eventually drive daily cases to zero. This suggests that

Stay-at-Home Orders are best used in combination with other policy tools, such as mask mandates

and contact tracing. Not only are these likely effective approaches in their own right, but they

might augment the effects that we estimate as well. There is also a growing literature studying the

costs and benefits of lockdown orders (e.g. Kaplan et al. (2020)), and while an economic model is

needed to trade these off, we believe that our estimates add to this debate by precisely estimating

the benefits of a lockdown from a public health perspective.

While our results are encouraging, it is unreasonable to expect that we can capture the full

dynamics of an infectious disease with a simple SIR model. There is a nascent but deep literature

exploring several important dimensions of the spread of COVID-19. We hope to augment this work

by giving researchers the tools to inform their empirical approach using insights from Epidemiology

rather than a standard econometric design. In particular, future research could expand on this basic

model in two important directions.

First, while we note that Ic,t−1 (along with the county-specific growth rate) is a sufficient

statistic for the future evolution of cases, this is only true in the context of our model. If the state

policymaker has information outside of this model that informs their SAH timing decision (for

example, that the disease is spreading among undergraduate students in a college town but not

circulating outside of this subgroup), this timing might fail to be random conditional on knowing

cumulative cases last period. Accordingly, future work ought implement a more complicated multi-

group SIR model (see Acemoglu et al. (2020)), as well as a political economy model to explicitly

address the non-random adoption of SAH orders.

Finally, it is important to note that the model we construct here is only appropriate at the

beginning of a pandemic. As a result, any study interested in the current spread of COVID-19

should reconsider the assumptions made here. We sketch an outline of these assumptions and their

plausibility in the present. First, we assume that almost every individual in the population is

susceptible to disease, i.e. Sc,t/Nc ≈ 1. This allows us to ignore the progression of the susceptible

population in an (S)IR model. However, as this population drops, this assumption begins to



introduce important bias into estimates. If Sc,t/Nc < 1, then equation 5 becomes

ln(mc,t) = ln(Sc,t/Nc) + ln(βc) + ln(Ic,t−1)

Due to the shape of the natural log function, significant drops in Sc,t lead to a large negative bias in

estimates of event coefficients. Second, we assume that the population of recovered individuals Rc,t

is small relative to to the population of infected people Ic,t. This obviously becomes inappropriate

later in a pandemic; however, it is in principle possible to adjust for this with data on the number of

recovered individuals or additional assumptions about the recovery rate. Third, recent months have

seen the spread of newer mutations of COVID-19. If the infection rate θc,t differs across variants,

additional assumptions are needed to model the change in this rate over time. For example, suppose

that variant B overtakes variant A over the course of a month. Even if we assume that the infection

rate is constant across the country and over time for each variant so that the series {θA, θB}30t=1,

the true infection rate will be αtθ
A + (1− αt)θB where αt measures the prevalence of each variant

in the population. This setup would motivate the include of daily fixed effects to control for this

changing composition.
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